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=prL Systémes symétriques (Iggon@

Solutions générales du régime libre du systéme

x4 = X cosét —@;) + X;; cos(@t — @)

x, = Xjcos(w;t — ¢;) — Xjp cos(wy it — @)
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Premier mode du systeme (oscillations en phase)

symétrique X1 = x; = Xjcos(mt—¢) (822

Deuxieme mode du systeme (oscillations en

opposition de phase)

Xz COS(wzt — @2)
(8.23)
- X2 COS(CUQZ = §02)



£PFL Modes propres et Reponse dynamique

Mécanigue Vibratoire - SGM Bab - G. Villanueva

https://www.youtube.com/watch?v=0e0P|v2zopQ <—



https://www.youtube.com/watch?v=oe0Pjv2zopQ

=Pir-L

Chapitre 10

Oscillateur Généralisé




=PFL Concept d’oscillateur généralisé - E.d.M
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Equatlon dlfferentlell matr1c1elle d’un systeme

généralisé ¥n degrég’de liberté L€ A

§+[C19+1K9 =70 | a0

Exemples d’ oscillateurs généralisés a n degrés de

xv /X vecteur des de.:placements libortd
X vecteur des vitesses
X vecteur des accélérations + systemes de solides indéformables,
M | matrice des masses soumis a des forces €lastiques et des
'C| matrice d'amortissement (pertes) forces résistives lincaires
: K ] matrice de rigidité + systemes continus déformables, discré-
f vecteur des forces extérieures tis€s par des méthodes numériques ou
expérimentales



=P~L Concept d’oscillateur généralisé - Energies

Energie potentielle de 1’ oscillateur généralisé
(forme quadratique symétrique positive non
strictement)

Energie cinétique de 1’ oscillateur généralisé
(forme quadratique symétrique positive)

1 &2 X o | . . —_ n n pa—
[T = 5 2 2y ki = ‘z‘xT[/mx (10.2) V= lZZk.. Xjx; = le[K]x (10.3)

Fonction de dissipation de m (demi-

puissance consommée) de 1’ oscillateur (forme
quadratique symétrique positive non strictement)

n n A~ 7
CC = — 2, D, Cy Xy = le[c]x (10.4)
254 2
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=PFL Equations de Lagrange
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Equations de Lagrange d’un systéme dissipatif a

n degrés de liberté
d 0 0 0
d T T %
—( . J Ly =fk(t)
(dr { dxy ox, 0x,
i | k=1...® (10.9)
ou sous forme vectorielle
" w f \ ) :
iﬁ? L AL = f(1)
dr Laxij kaxl- J Lax,- J
d (dT 0T 0V oW
| = 10.10
dz(ax] ox o o J 0 U010)



=PFL Equations de Lagrange

Equations de Lagrange de I’oscillateur généralisé

) iy - ) Application des équations de Lagrange a
(€nergie cinétique indépendante des déplacements) PP q glang

I’oscillateur généralisé

d [or| [ov]| [ow] d . .

ar |05, | an | o [T M]3+ [K]x +[C]¥ = f (1)
d (9T oV ow L[ZM]X'+[C]J&+[K]x = f(1)
| | = 10. T A
dz(axJJr 3 L op Ju) (01D 7 | | -
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=PFL Oscillateur Généralisé - Application a 2 DAL

¢ e, "
m,

B ’ W o ‘

¢ 4

Energie cinétique du systeme a deux degrés de
liberté

2
n .Xl +——m2 Xz
O Lz L 2
m; 0 |[x

| 0 my || Xy
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=PFL Oscillateur Généralisé - Application a 2 DAL
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=PFL Oscillateur Généralisé - Application a 2 DAL

¢ Cy )

Fonction de disgipation de Rayleigh du systeme /.
deux degrés de liperte

¢t C, C3 Xy |

_{xl .X:Z} 1 . 7

_C3 C2 + C3_ kxz ]

L
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=P~L Introduction

= Solution par solutions particulieres

= Solution en la Base Modale

= Orthogonalite des vecteurs propres

= Cas libre (reponse aux C.1.)

= Quotient de Rayleigh

Mécanigue Vibratoire - SGM Bab - G. Villanueva



=Pir-L

Chapitre 11

Oscillateur Généralisé Conservatif




=PFL Equations Généralisées Conservatives

Equation différentielle de I’ oscillateur généralisé a
Cn degrés de @ en régime libre conservatif

UM]@ +f1<\]’£ﬂ (11.1)
: _

Reformulation du régime libre de 1’oscillateur
généralisé conservatif

% +[M]" [Kjr -0 (112

Meéthodes de résolution du régime libre de
5?+[A]@: 0 (11.4)

Ioscillateur généralisé

4 ; o e Y
»  Combinaison linéaire de solutions
particulieres B <

f\ —_—
1 . angement de base par recours aux
M = |[M] | K] (11.3) @;omales (ou découplée

\

Déftinition du noyau du systeme
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=P~L Resolution par solutions particulieres

Résolution du régime libre conservatif par
recherche de solutions particulieres de la forme

@ @cos(a}t — (11.5)

Intégration de la solution dans I’expression du
régime libre conservatif

@11+ [l ge(or—o)- 0 YE

[

ou

k |-611)x - 0 (6 = o) 11.7) YK = by (TrD- %Zﬁ - D

L/) w‘L/UJﬁ /(}-):/ S 7% _—»fd\j (J-M%q«/o)
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=P~L Resolution par solutions particulieres

Condition pour une solution non triviale Equation caractéristique du systéme oscillant ou

H\A] - 0|1 ]l = 0 (11.8) equation aux pulsations propres

ou, par développement,

@ + o 0 + o, 912
+...+t0oa,,0+a, =0 (11.10)

(11 - 5) a1 A1 n
Ordonnancement des solutions (toutes positives) de
sy )y — O~ ) p ~ 0 (119 I’équation caractéristique et des pulsations propres
277 dy2 Ao — O

w <wp << wy << Wy (11.12)
l — & ”w _,>®aJJ»Q,
{@ 6o e b 8
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=P~L Resolution par solutions particulieres

Ecriture en notations indicielles du mode propre de

rang p
o Solution particuliere du systeme différentiel r 4/ g\ TR BV
G relative a la pulsation propre de rang@ ¥p\ = @ CO (a) =0, ): (>e K\? "
g ¥ = Y : ol Xp - anled-Hp)
o =Xpeoslwpt-gp) (LI i = %, 1.1

M 4 : |

=

g — — \b

S

% ) : CgtéYaMw
% @ Q 3

% _




=P~L Resolution par solutions particulieres

N =D
Feo - ebe
Calcul des composantes de 1a forme propre de == A

rang p

[A]-5,[1]|x, =0

Solution générale — Combinaison lin€aire des
solutions particulieres

-

-
4
Composantes des formes propres définies a un < @(t) = ;@@ Cos(a)pt — gop) (11.16)
K p

facteur pres — Normalisation des amplitudes

X, / o
B, =— = @:6){ (11.15)
X, P VP

X, amplitude de référence
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=PFL Résolution par solutions particulieres
¥(6) = ) BpXp cos(wpt — 9,)

—

@) = ByX; cos(w;t — @) + - E . cos(a)pt — <pp) + .- f” o cos(w,t — @)

[ *’

/
o) (7808 AT e
Xi:(t) = ,B:il X COS(@t — @)t + :B:ip Xp COS(@ — <,0p) + -+ ,B;n X, COS(@t — @, (11.17)
\w0) | \8 \s../ e/
\ Mode n

Mécanigue Vibratoire - SGM Bab - G. Villanueva




=PrL Reésolution dans la base modale > _
2

- 43’ -~ — / - [/ .\
1 &E\ = i&. / g A
Résolution du régime libre conservatif par chan-

gement de base — Matrice de changement de base / rfD\ @ m\

J:[;] (11.31) [B] = 6 ? = ﬁju o \Bip| - ﬁm

Reformulation du régime libre conservatit par le
changement de base

(11.32) ; ;
M] [B]: + [K][B]j = ( (11.33)
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=PrL Résolution dans la base modale
B +KIBlG =0 (133

Prémultiplication de I’expression du régime libre
par la matrice

M)[BIG + G = (11.34)

r un découplage des n équations
dt régime libre conservatif

Y S ~ Uka)( (1 ) Condition nécessaire et suffisante d’existence d’une
| M| =[B] [M][B] . (11.35) matrice | B | diagonalisant simultanément [ M| et [ K|

(k2] =[B]"[K][B]
6/1 et [?/D symétriques

E,ec [ Mo] et [ KO] dia@ \&et/ou [K ] définie(s) strictement positive(s)
—_— D /

7=
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=PrL Reésolution dans la base modale

(11.35) k

| |
gécoupgagﬁj des n équations du régime libre
conservatif
M3 aa M 7’ |
<é (!’,)qp + kg q, =0) (p= 1,2, ns n) (11.28)

Lép +5éqp 29( (p i 192 ----- l’l) (1129)

aveC

= 5, = (11.30)
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=PrL Reésolution dans la base modale

m"(nff“cg?]T[M] [Bq +[K] Bld=0  (1134)
\%‘ession matricielle du régime libre

(11.37)
(11.38)
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[A] matrice des valeurs propres de | A |
[ B] matrice des vecteurs propres de | A |




£PFL Resolution dans la base modale
Régime libre en n équations

[M°]G + [K°]G =0 (11.43)

GGrmerikg=0 a1y

Forme finale du régime libre par découplage en n
équations différentielles du second ordre

G+ [4]G =0 (11.46)
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[A]=[Mo] ' [Ke]  (11.45)




=PrL Reésolution dans la base modale

PR
i . / . . , . - (J.) ‘ - O
Intégration des €quations diftérentielles Lﬂg T e 36: .
découplées

A
(/COS 0) l"“
Lt' _12 }2 (11.53)

Forme générale de la solution du régime libre
découplé

(50 = [31d - 2@%(@—
= 2 'B_p) +Up cos(wpt — QDP)J
p=1 _
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£PFL Energie dans la base/forme modale

Energie cinétique du systeme exprimée dans la Energie potentielle du systeme exprimée dans la
base modale base modale

@= —l—xT[K]x

2
- a7 [BI'[K][B]q

Surar

)
—1"2 (11.47)
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EPFL Frequences propres

Meécanique Vibratoire - SGM Bab - G. Villanueva

Positivité des valeurs propres (carrés des
pulsations propres) du systéeme

0 |Me| définie strictement positive

>
k? > 0 | Ke| définie positive non strictement

k()
= &wg B zo\ (11.49-52)
m,

Ordonnancement des solutions (toutes positives) de
I’équation caractéristique et des pulsations propres

o7\ < % L e B By B en €| Oy (11.11)
<0y <..<0, <..<0, (11.12)




=PFL Orthogonalité des vecteurs modaux

(-5 [T
Indépendance lin€aire des vecteurs modaux ‘
. Ny, B, %0 (11.56)
= p
§
O Développement de la projection de 1a matrice de
s masse | M | dans la base modale (base des Identification terme a terme des masses modales
= vecteurs modaux) - _
3 < s =m ] auss
e T 0 - - *
5 (8] [M][B] = [M°]| (1.57) Bl [M]B, =0 r= SS (11.59)
s B
% = [ M][ B ] = Orthogonalité des vecteurs modaux
: T ~ -

.. BT[M|B. =5 m° (11.60)

- o | ) g . — D = .
M ¢ = ﬁar ' 035 = J — X QJiO

18 - / S; [FQ’.M] ’?9 = ‘0),; s = gg.w\:‘b@" C$S




=PFL Orthogonalité des vecteurs modaux

Développement de la projection de 1a matrice de
rigidité | M | dans la base modale (base des

vecteurs modaux)

[B]' [K][B] = [K°]
T ke 0

Meécanique Vibratoire - SGM Bab - G. Villanueva
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=PFL Orthogonalité des vecteurs modaux

Deuxieme forme de I’ orthogonalité des vecteurs
modaux

B/ KB, =06,k (11.61)

Orthogonalité des vecteurs modaux et des modes
propres

-

Le produit scalaire, pondére par la matrice des
p

masses ou la matrice de rigidité, de deux formes
ropres ou modes propres de rang différent est nul.

Orthogonalité directe lorsque la matrice des masses
est diagonale a termes tous €gaux, @/I] = myg | 1] j

Meécanique Vibratoire - SGM Bab - G. Villanueva

F'p. =0 r#s ) (11.62)
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=PFL Normalisation des vecteurs modaux

Procédures de normalisation du vecteur modal de
rang p (p =1, 2, ... n)

Valeur unitaire attribuée a I'amplitude d'une
variable deéterminée i du vecteur de rang p

% =0 e

Valeur unitaire attribuée a la plus grande des
amplitudes du vecteur de rang p

-
(B ) s = L/ / %

XMasse modale de rang p rendue unitaire

Cﬁj B, =(1) %< (11.63)

Norme unitaire du vecteur de rang p /
\ARDY:" @ (11.64)

Meécanique Vibratoire - SGM Bab - G. Villanueva
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£PFL Reponse a des conditions initiales

Conditions d’un lacher initial

NT—— & — . . ©F
x(O):: Dy cos @y (LL6S-6T)\ | Gy 5

¢
w,X,sing, (11.66-68)

Prémultiplication des conditions initiales par le
‘ produif p7| M|

Meécanique Vibratoire - SGM Bab - G. Villanueva

| e S
_ S, n 4 - {o Xf ) ((Q\f} . S}QM
(10 - 25,0, 7 B
n LA o XY S m\te /> \
B! [ M|V = ZQ[M]ﬂ w, X,sin@, ~ " W v
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£PFL Reponse a des conditions initiales

Extraction de I’amplitude de référence et de la
phase du mode de rang r

BT M] X, J (11.69)

Réponse du systeme aux conditions initiales

@cos(a) "é
in ¢ )

:Zﬂ X, cosqopcosa) ot +sm(ppsma) !

p
g[ ; X cosa)r [\ﬂéi sma)

Meécanique Vibratoire - SGM Bab - G. Villanueva
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£PFL Réponse a des conditions initiales Ero e 1
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proportionnel a un vecteur modal (
et d’une vitesse initiale nulle

ERFS

(

Réponse du systéme aux conditions initiales W Ve
— . 1 | N
x=)p,X, cos(a)pt—(pp) =Y —B,| BJIM]X,cosw,t+— BI[M]V,sinw,t
p p "Mp @p J
N w

Cas particulier d’un déplacement initial

n

p

1

0,

P
-

B, (BLIM]B,)cosw,

v‘/()_-—_0

=9

- X, Fﬂr)c_os o0\ (11.74)

U/

Cas particulier d’un déplacement initial et d’une
vitesse initiale proportionnels a un vecteur modal

&) = %) Yo = Y )
f 2 /
X = \/Xg +(ZOJ cos(a)rt —\(/1,,)

S~ -
tg @, = —"0 (11.76)
XO ),



£PFL Reponse a des conditions initiales

Cas particulier d’un déplacement initial
proportionnel a un vecteur modal ( X, = X, f8,)
et d’une vifesse initiale nulle (V, = 0)

x:XOi
p

l T
M = , : 11.74
Zﬁp (ﬂp[ ]ﬂ,,)cosa)pt Xy B, cosm, 1 ( )

Cas particulier d’un déplacement initial et d’une
vitesse initiale proportionnels a un vecteur modal

(XO = XO ﬂr’ VO = VO ﬁr)

| 2
X = \/Xg : (ZO) B, cos(w,t - @,)

Meécanique Vibratoire - SGM Bab - G. Villanueva
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=PFL Quotient de Rayleigh

/

Définition du quotient de Rayleigh (w)vecteur

quelconque)

[@(u) - l@%‘j
\ ey d

Meécanique Vibratoire - SGM Bab - G. Villanueva
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(11.79)

Valeur du quotient de Rayleigh pour un vecteur
modal

(11.78)



=PFL Quotient de Rayleigh

Valeur du quotient de Rayleigh pour un vecteur
quelconque u écrit comme combinaison lin€aire
des vecteurs modaux ,Bp (p=1,2,...%)

T

s R(u) = R 2,7, B,

0 T
S = R([B]y) avec y:{}/l,...}/p,...yn}

= T

7 20,7
I WT—

2 _ B K|[[B)y _ J’T[A]J’_ p %;-(\
S T%B”T'M B) yTy !

S g |" [M][ B}y ZV
3 sous la condition de normalisation =
=



=PFL Quotient de Rayleigh

Valeur du quotient de Rayleigh au voisinage d’un
—

vecteur modal
g R(u) = (11.85) Statzonnarzte quotient de Rayleigh au
5 VOI € du vecteur modal considéré
& S
3 avec Ru)=|0,+ 206,621 2| (11.85)
o — K © p#r P49 p#r )
i Yo =8, ¥ (P=Liuni)
- (B)<<1l Vp#1 (11.84) L -3 (5, -0 ) VL0
IS5 - pFEr g
- _J
T \
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=PFL Quotient de Rayleigh

Valeur du quotient de Rayleigh au voisinage du
vecteur modal fondamental

: Ru) =8 + Y (8, -8 )€ (11.87)

& pET

i‘ > 0, (11.88) /ﬁéoréme d’encadrement du quotient de Rayleigh
L(') <

'528 @S R(u) <9, )

? Valeur du quotient de Ijiai/l(;eigh au voisinage du 7 == T

% vecteur modal de rang n Principe de Raylelgh

z R(u) = o, + 2(51, — 572)85 wz = 0, = min R(u)

% pEr N u

3 <5 Wn 2 0, = max R(u) N

—

~—

Q); U LW,
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